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Abstract—Web services are widely used in modern software,
providing diverse data and functionalities. Some data and func-
tionalities are critical to an application’s execution and user expe-
rience, posing strict requirements on the Quality of Service (QoS)
of their delivery (e.g., latency and reliability), which services often
fail to meet. Previous studies show that composing homogeneous
services, i.e., simultaneously invoking multiple services providing
the same functionalities and returning the first response, can
improve latency and reliability. However, this approach increases
the workloads on cloud servers and causes additional network
traffic, limiting its deployment at scale. Our empirical study re-
veals that services deliver varying QoS across different locations,
making it possible to reduce the invocation cost by tailoring
the composition strategy for different clients. In this paper,
we introduce an approach that composes homogeneous services
dynamically for each client, improving user-perceived QoS while
minimizing the invocation costs. In particular, our approach first
probes the QoS of all homogeneous services for a client, and
then calculates an optimal composition strategy that satisfies the
QoS requirements specified by App developers with minimum
cost. We prototyped our approach as an Android library and
tested it via both real-world experiments and simulations. The
evaluation results show that our approach significantly improves
QoS compared to invoking a single service with average best
QoS across all locations (enhancing reliability to 100%, reducing
average latency by 7% and tail latency by 35%) while incurring
50% less cost than static homogeneous composition, making it a
useful tool for service-oriented applications.

Index Terms—Quality of Service, Service Composition, Run-
time System

I. INTRODUCTION

Web services are widely used in modern software systems,
providing diverse data and functionalities that are essential
to many applications. Some of these services are critical to
an application’s execution and user experience. For example,
applications that use interactive services—such as web search,
financial trading, gaming, and social networks—rely on con-
sistently low response times to attract and retain users [1].
When multiple functionally equivalent services are available,
developers of these service-oriented applications face the
problem of meeting the stringent QoS requirements of their
applications, such as low latency, low tail latency, and high
reliability.

The current state-of-the-practice approach used by applica-
tion developers is average-optimal service selection (see Fig.1,
top left), which selects and hardcodes the service with the best
average performance among all functionally equivalent options
into the application [2], [3]. However, according to service
statistics collected by marketplaces such as RapidAPI [4], and

an empirical study of developer comments on web service
usage [5], these average-optimal services do not always deliver
the best QoS performance in practice. To further improve QoS,
previous works [6]–[8] have explored the static composition
of homogeneous services, where developers hardcode multiple
equivalent services into the application, and invoke all of them
simultaneously at runtime, using the first response to proceed
with the application’s execution (Fig. 1, bottom left). While
effective in enhancing QoS, this method—due to its strat-
egy of simply invoking all specified services—significantly
increases the number of service invocations, leading to higher
workloads on all web servers and increased network traffic.
The additional invocation cost scales with the number of
available equivalent services, making this approach impractical
for large-scale deployment.
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Fig. 1: Service Invocation Approaches for Improving User-
Perceived Performance

By conducting an empirical study that involved invoking
services from five global locations, we observed that most ser-
vices exhibit significantly different QoS at various locations.
Inspired by this observation, this paper introduces a more cost-
efficient homogeneous service composition approach, which
dynamically customizes service composition for end users at
runtime. As demonstrated by the right sub-figure in Fig. 1, for
clients at different locations, our approach first probes the QoS
of all homogeneous services, then computes a client-specific
composition strategy that determines which subset of services
to invoke. This strategy aims to meet the developer’s QoS
requirements (e.g., latency and reliability) within a predefined
invocation cost budget. By only invoking the subset services,
our dynamic approach reduces the cost while preserving QoS
performance compared to the static approach.

The main contributions of our paper are as below:
• We conducted a large-scale study of web service QoS by

invoking services at five locations worldwide. Our study
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confirmed that 1) Service QoS significantly varies by
location, resulting in some users receiving unsatisfactory
QoS, and 2) composing homogeneous service statically
improves QoS, but causes unnecessary invocation costs,
which motivates this work.

• We introduced an approach that customizes service com-
position strategies for individual clients for both QoS
improvement and cost efficiency.

• We proposed a QoS estimation model for composition
strategies, which ensures selecting a QoS-optimal strategy
with less probing cost.

• We prototyped our approach and evaluated it with testbed
experiments and trace-based simulations. The results in-
dicate that 1) our QoS estimation model is more accurate
than all baseline approaches; 2) on average, our approach
improves reliability from 99% to 100%, reduces mean
latency and tail latency by 7% and 35% respectively,
while incurring 50% less cost than static homogeneous
service composition.

The rest of this article is organized as follows: Section
II discusses related work; Section III presents an empirical
study identifying the challenges and opportunities in web
service QoS; Section IV, and Section V explain the design and
evaluation our approach, respectively; Section VII concludes
the article. This article is a revised and extended version of a
conference paper published in ICSOC’24 [9]. In particular,
while the conference paper introduced the theoretical QoS
estimation model for dynamical homogeneous composition,
this article extends it by: a) presenting a large-scale empirical
study on web service QoS to further motivate the problem and
our solution; b) introducing a runtime system with an intuitive
programming interface to facilitate adoption by application
developers; and c) providing a more comprehensive evaluation
of QoS improvements and system overhead.

II. RELATED WORK

This section summarizes the existing works on the empirical
measurement of web service QoS and the approaches used to
optimize the service QoS.

A. Service QoS measurement Studies

The most recent large-scale web service QoS measurement
was conducted 10 years ago [10], which investigated the
failure probability, response time, and throughput of real-
world web services. The study revealed that the performance
of a service varied significantly across different invocation
contexts, such as locations and times. The past ten years have
witnessed the rapid growth of content distribution network
(CDN) [11], which brings services closer to users. In this case,
there is a lack of an updated and comprehensive investigation
on the QoS of web services, which motivated our study. The
blooming usage of RapidAPI also provides data insights into
the QoS of services.

B. Service QoS Optimization

Web services face the problem of guaranteeing QoS for
distributed end users as many applications require the service

to consistently deliver fast, reliable performance for better
user experience, thereby keeping their dominance among their
competitors. The approaches to enhance the service QoS can
be mainly categorized as server-side and client-side.

1) Server-side Approaches: The service providers strive to
improve their service QoS in multiple ways: 1) by deploy-
ing their service on more CDNs [11] or edge servers [12],
[13] that are closer to users to reduce network latency and
failures caused by network congestion; 2) provisioning more
computational resources on the backend, such as increasing
the number of replicas or virtual machines to improve concur-
rency and reduce processing latency. These optimizations have
proven to improve user-perceived performance in the past and
remain the standard practice in commercial cloud and edge
platforms [13]–[15].

However, such server-side optimizations have gradually
reached a performance bottleneck. Once servers are suf-
ficiently distributed and provisioned, further improvements
bring only marginal latency gains. The remaining delays
are dominated by last-hop conditions—for example, WiFi
interference, local routing congestion, and device processing
overhead—that are outside the visibility and control of the ser-
vice provider. Moreover, the internal operation of the backend
infrastructure is entirely opaque to application developers: they
cannot determine which replica will serve a given request, nor
influence how requests are scheduled or routed. Developers
interact with these services only through published APIs,
receiving aggregated QoS metrics such as average latency and
reliability.

Consequently, while server-side methods enhance global
efficiency, they cannot guarantee consistent quality for in-
dividual users. This limitation motivates the exploration of
client-side approaches, where decision-making shifts from
the service providers to the application developers, enabling
greater flexibility in how services are utilized at the application
level. These approaches are introduced below.

2) Client-side Approaches: When developing service-
oriented applications, the developers face multiple equivalent
services and need to carefully use them so that application
users receive a better user experience.
QoS-based Service Selection. Given a set of functionally
equivalent services, developers can select among them based
on various criteria, ranging from non-QoS factors such as
the monetary cost of a single invocation and the quality of
usage documentation to QoS-based metrics like reliability
and latency [3]. In practice, developers typically choose the
service with the best average QoS and hard-code it into the
application [2], [3], as service providers generally publish
QoS metrics as average values over all accepted historical
invocations. For instance, if an application prioritizes low
response time, the service with the lowest average latency
is selected; if reliability is more important, the one with the
highest average success rate is selected. This average-optimal
approach assumes that the selected service will consistently
deliver the best performance for the application [16]. However,
as our empirical study shows, this assumption often breaks
down, as some services may lack server deployments in certain
regions, despite offering the best performance in most others.
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Static Homogeneous Service Composition. Homogeneous
service composition refers to invoking multiple functionally
equivalent services simultaneously and using either one or
multiple responses to fulfill the application’s functionality,
depending on the QoS metric the developer aims to optimize.
This technique has been explored in various domains to
enhance QoS.

For example, in the IoT domain, equivalent services are
commonly available. A single functionality—such as detecting
the presence of fire—can be implemented in multiple ways: (a)
reading a temperature sensor to check if the indoor temperature
exceeds a threshold; (b) reading data from a smoke sensor; or
(c) applying image processing to camera footage. Since timely
fire detection is critical for human safety, some studies [6],
[8] propose invoking multiple equivalent implementations in
parallel and using the first response to reduce detection time
(i.e., speculative parallelism). In the web services domain,
Bhatia et al. [7] invoke multiple cognitive web services and
fuse their results to improve data-related QoS. Specifically,
they invoke multiple face detection services, wait for all
responses, and then select the result agreed upon by most
services as the final output. This majority-voting mechanism
improves the user-perceived accuracy and trustworthiness of
the service.

Despite their benefits, these approaches simply invoke all
services specified by static configurations at the application
development stage, which lack flexibility and can lead to
significant operational costs at the runtime stage. In con-
trast, our approach—dynamic homogeneous service composi-
tion—dynamically and strategically determines which subset
of the specified equivalent services to invoke at runtime,
aiming to maximize QoS improvement while minimizing
invocation cost.

III. MOTIVATION AND EMPIRICAL STUDY

The motivation for dynamic homogeneous service compo-
sition arises from our extensive analysis of service statistics
gathered from RapidAPI and the real-world QoS performance
of service invocations. RapidAPI, the world’s largest API
hub, serves nearly three million developers with access to
tens of thousands of APIs. Specifically, we first identified the
widespread challenges of unmet QoS in web services. We then
highlighted the opportunity for dynamically composing ho-
mogeneous services as a cost-effective approach to enhancing
QoS for performance-critical tasks.

A. Service QoS Study

We begin by examining the service QoS statistics provided
by RapidAPI. However, due to the lack of transparency in how
RapidAPI collects and maintains this data, there is a possibility
that the reported QoS metrics are based on outdated invoca-
tion history, which may not accurately reflect current service
performance. To address this concern, we conducted our own
empirical study by invoking the services and collecting live
QoS measurements.
QoS Statistics of Services Measured by RapidAPI Rapi-
dAPI delegates end users’ requests to services. It also measures

the latency and successful rates of invoking services, and
displays the statistical data on each service’s web page. We
developed a Python-based crawler and downloaded the web
pages of all 5,784 active web services that provide QoS
statistics. From each web page, the crawler obtained the
statistic data at the service level (i.e., reliability) and average
latency. We found 2862 services with statistical QoS data
displayed in their web pages. Fig. 2 shows their latency and
reliability distributions, where only 1627 services have an
average latency of less than 1,000 ms and only 1,416 services
have 99% or better reliability (i.e., the percentage of successful
calls made to the service) 1.

Fig. 2: Services QoS Distribution on RapidAPI

Empirical QoS Measurement The most recent large-scale
web service QoS measurement, conducted 10 years ago [10],
revealed significant performance variation across different in-
vocation contexts like locations and times. Since then, the use
of content distribution networks (CDNs) [11] has increased to
reduce latency by bringing services closer to users. However,
it is still unclear if CDNs consistently ensure service reliability
and minimize end-to-end delays, which are crucial for a good
user experience.

Methodology: Our study evaluated six types of tasks:
weather forecasting, IP-to-location, face detection, language
translation, flight data retrieval, and hotel data retrieval, to
cover typical service usage scenarios [17]–[19]. For each task,
we selected three homogeneous services, giving priority to
those with lower subscription costs and higher popularity. We
developed a Python program to invoke these services every 40
seconds from five global locations—Frankfurt, Tokyo, Sydney,
Mumbai, and Michigan—over three continuous days. This
process collected approximately 4,000 samples per service set,
totaling 90 service invocation trace sets.

Results: Table I summarizes the average latency and tail
latency (i.e., 95th percentile latency) of all six sets of ho-
mogeneous services among five locations. We observe that 1)
Among the 90 instances, many services exhibited both average
and tail latencies in the range of several thousand milliseconds
at certain locations. 2) On average, the tail latency was nearly
twice as high as the corresponding average latency, reaching
approximately 1,040 ms. Table II demonstrates the average
reliability for all functionalities across all locations. We also
found that most services exhibit unreliable service delivery,

1https://docs.rapidapi.com/docs/faqs
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Task Service Germany Japan Australia India US
Avg. Lat. Tail Lat. Avg. Lat. Tail Lat. Avg. Lat. Tail Lat. Avg. Lat. Tail Lat. Avg. Lat. Tail Lat.

Face Detection inferdo 1574ms 1769ms 1735ms 1937ms 1623ms 2030ms 2081ms 2291ms 1761ms 1924ms
microsoftFace 827ms 1252ms 1152ms 1573ms 1377ms 1851ms 1554ms 1820ms 1065ms 1365ms

SmartClick 954ms 1314ms 1610ms 1975ms 1674ms 2003ms 1468ms 1900ms 1517ms 1841ms
IP to Location IP_GEO 22ms 40ms 25ms 37ms 22ms 37ms 531ms 562ms 116ms 295ms

IP_lookup 35ms 56ms 39ms 57ms 37ms 53ms 43ms 79ms 182ms 373ms
IPGtolocation 651ms 907ms 636ms 796ms 803ms 989ms 934ms 1241ms 533ms 896ms

Weather Forecast openWeatherMap 62ms 123ms 297ms 467ms 365ms 576ms 231ms 312ms 222ms 610ms
Visual Crossing 397ms 439ms 716ms 783ms 904ms 1016ms 828ms 3773ms 296ms 797ms

weatherbitio 374ms 419ms 705ms 753ms 902ms 951ms 808ms 856ms 248ms 575ms
Translation Lecto Trans. 343ms 543ms 486ms 845ms 683ms 1028ms 590ms 873ms 350ms 538ms

NLP Trans. 406ms 461ms 699ms 802ms 866ms 955ms 1166ms 1260ms 193ms 253ms
Text Trans. 538ms 608ms 772ms 878ms 959ms 1074ms 1193ms 1363ms 289ms 359ms

Flight Info. FlightRadar 3520ms 4088ms 4084ms 4634ms 2468ms 2962ms 6213ms 7551ms 2383ms 3090ms
FlyTrips 309ms 375ms 1374ms 1491ms 1679ms 1765ms 1484ms 1632ms 823ms 1163ms

TravelAdvisor 1128ms 2471ms 1172ms 2825ms 1312ms 3476ms 1580ms 3161ms 899ms 2655ms
Hotel Info. Booking.com 238ms 769ms 652ms 1292ms 714ms 952ms 749ms 1149ms 635ms 1625ms

Hotels 968ms 4284ms 1102ms 4635ms 1224ms 5810ms 1628ms 5242ms 887ms 4974ms
Priceline 1925ms 3615ms 2333ms 3313ms 2249ms 3438ms 2482ms 4090ms 1983ms 3197ms

Avg. Performance — 792ms 1307ms 1088ms 1616ms 1103ms 1720ms 1420ms 2175ms 799ms 1473ms

TABLE I: The Latency Performance for All Six Sets of Homogeneous Services at Five Locations Worldwide

FaceDet. IP2Loc. Weather Trans. Flight Hotel
Service1 99.98 100 100 99.88 100 100
Service2 98.94 99.99 99.99 99.99 100 100
Service3 99.97 99.99 99.99 99.95 100 99.43

Avg. 99.63 99.99 99.99 99.94 100 99.81

TABLE II: The Average Reliability (%) for Homogeneous
Services, with Service 1, 2, 3 Representing Different Services
for Each Task Type.

with an average reliability for all services below three nines
(99.9%). The services for face detection and translation are
the least reliable among all six sets of services. The reason
for this could be 1) the cloud backends of these cognitive
services are more complex, and 2) a larger volume of data
transmission (e.g., sending images for face detection) could
also cause service failure.

Overall, service QoS—both latency and reliability—is
highly variable and often insufficient, especially given that dif-
ferent applications have diverse QoS requirements. Improving
user-perceived QoS is critical for many applications, as even
delays of a couple of hundred milliseconds can significantly
impact revenue [20], [21]. For example, Amazon reports that
every 100ms of additional latency results in a 1% drop in
sales [22], while the TABB Group estimates that a broker
could lose up to $4 million in revenue per millisecond if its
electronic trading platform is just 5ms slower than a com-
petitor’s [23]. Human-computer interaction studies similarly
demonstrate that users are sensitive to small differences in
operation delays [24]. Therefore, achieving better QoS has
become a widely recognized and essential goal.

B. Observations and Opportunities

We further analyzed the measurement results and drew a few
deeper observations that motivated our approach to composing
homogeneous services for individual users to improve user-
perceived QoS.
Observations: We first investigated the QoS performance of
average-optimal services across different locations. For each
task, given three services, the average-optimal service was
selected as the one with the best average latency across all

five locations. Our results show that average-optimal services
do not consistently outperform their peers for most tasks. For
example, in language translation, Lecto Trans. had the
best latency in four locations but not in Michigan, USA.

Observation 1

Due to the high variation in service QoS, average-
optimal services could not consistently outperform
their equivalent peers in some locations, risking user
experience.

We then examined the efficiency of the current static homo-
geneous service composition. Using the collected service in-
vocation traces, we showed the latency improvement achieved
by invoking different services. For example, combining two
services reduces average latency by 10% and 95th percentile
latency by 24%, as shown in Fig.3a. Further adding a third
service reduces tail latency more, as per Fig.3b. However,
Fig.3c shows combining all three services fails to further
reduce the latency compared to using two services, which
means that simply invoking all services does not always
guarantee better QoS while incurring higher cost.

Observation 2

Static homogeneous service composition may incur
unnecessary costs.

To find the efficient service combination for each user, it
requires accurate estimation of the resulting QoS for each
combination. Existing methods [25], [26] use the minimum
average latency among services as the composited latency,
which is inaccurate: We observed that the average latency of a
speculative parallel invocation can be even lower, as the fastest
service may sometimes experience long tail latency, and the
slower service might return the result sooner.
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(a) Translation, Germany (b) Weather, Japan (c) FaceDet, Australia

Fig. 3: Latency of Combined Invocations of Homogeneous Services

Observation 3

Existing QoS estimation model for compositions is
inadequate.

To better satisfy the QoS requirements, there is a pressing
need to dynamically customize the service composition for
individual users. To realize this approach, it demands a more
accurate QoS estimation model.

IV. HOMOSERVICE: CLIENT-SPECIFIC SERVICE
COMPOSITION

This section introduces our approach to composing homo-
geneous services for individual clients. To differentiate it from
traditional web services, we refer to the composed service
as "HomoService." We adopt the syntax for homogeneous
service composition as described in [6], where a ∗ b denotes
the workflow pattern of invoking two services, a and b, in
parallel and using the first returned result.

A. Design Challenges

To the best of our knowledge, our work is the first attempt
at client-specific homogeneous service composition. Our ap-
proach addresses these challenges:

• How can we support HomoServices generically for dis-
similar application scenarios? We design a system work-
flow that requires no additional network infrastructure
support and adapts to the fluctuations of service QoS
(Sec. IV-B).

• How can developers build HomoServices considering
their vastly dissimilar QoS requirements, such as hard/-
soft requirements on latency, reliability, and cost? We
design programming models that are both intuitive to use
and flexible, ensuring high expressiveness (Sec. IV-C).

• How can we maximize the QoS improvements with
minimum overhead? We establish a model that more
accurately estimates the QoS of a composition with fewer
probing requests (Sec. IV-D).

B. System Workflow

Traditional (heterogeneous) service composition [27] typ-
ically involves a service gateway that dynamically decides

which services to invoke based on a client’s QoS requirements
and the services’ historical QoS. Adapting this approach to
support dynamic homogeneous service composition necessi-
tates deploying distributed gateways in a fine-grained manner,
which incurs additional costs. In contrast, our approach re-
quires only modifying the service invocation workflow at the
clients, eliminating the need for additional network infrastruc-
ture support.

Fig.4 shows our system workflow design, which includes
four steps:

1) Probing: Before generating an optimal composition
strategy, a client needs to probe the QoS of all ho-
mogeneous services several times. During the probing
stage, all services are invoked simultaneously. The first
returned result is used to continue the application’s
execution, while the QoS of the others (e.g., latency and
reliability) is recorded.

2) Calculating the Optimal Strategy: After obtaining suf-
ficient QoS samples, the client calculates an optimal
strategy for future invocations. This strategy specifies
a selected subset of homogeneous services.

3) Invoking: Following the strategy, the client invokes the
selected services in parallel, uses the first returned result
to continue the application’s execution, and sends the
QoS data to the monitoring module.

4) Monitoring: The monitoring module records the his-
torical QoS of HomoService invocations. If there is a
significant change in QoS, it disables the previously
generated optimal strategy and triggers probing again.

C. Programming Model

Our programming model allows developers to intuitively
build a HomoService, flexibly specify QoS requirements, and
declaratively define when to probe.

1) Building a HomoService: Fig. 5 demonstrates how to
compose a translation HomoService to convert English text
"hello world" into French using our programming interface.
Line 2 reads the XML configuration files for each homoge-
neous service, and Line 4 invokes the HomoService. The XML
file specifies a service’s endpoint URL, cost per request, and
mappings from user inputs to URL parameters and service
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outputs. For example, the configuration for the NLP Transla-
tion service (Fig. 6) details the service name (NLPTrans),
endpoint URL (’http://nlp-trans.com/v1’), and cost ($0.0002
per request). The file sets the HTTP method to GET and
maps input parameters for the text (text), source (from),
and target languages (to) into the service URL. The URL for
a request would thus be: http://nlp-trans.com/v1?text=hello%
20world&from=en&to=fr. The responseMapping section
instructs on how to parse the service’s JSON response to
extract the translated text.

1 //Creating Homogeneous Services
2 HomoService Trans = new HomoService("lectotrans",

"nlptrans", "texttrans");
3 //Invoking HomoService to translate ‘‘hello world’’

into French
4 String result = Trans.invoke("hello world", "en",

"fr");

Fig. 5: Composing a Translation Service

1 <?xml version="1.0" encoding="UTF-8"?>
2 <serviceConfig>
3 <serviceName>NLPTrans</serviceName>
4 <serviceURL>http://nlp-trans.com/v1</serviceURL>
5 <method>GET</method>
6 <cost>0.0002</cost>
7 <parametersMapping>
8 <input name="text">text</input>
9 <input name="from">srcLang</input>

10 <input name="to">tgtLang</input>
11 </parametersMapping>
12 <responseMapping>
13 <output

name="translated.text">text</output>
14 </responseMapping>
15 </serviceConfig>

Fig. 6: Example Configuration File for nlptrans Service

2) Specifying QoS Requirements: As different applications
have different QoS requirements, we provide an interface for
developers to define how to generate the optimal composition
strategy. The developers need to write a Java lambda function
to calculate the utility value of each service composition
strategy. Lines 1-10 in Fig. 7 show an example. The developers
obtain the estimated QoS values by calling corresponding
functions. The utility is then calculated by dividing reliability
by the product of latency, tail latency, and cost, aiming to
maximize reliability while minimizing latency and cost. Our
runtime system takes this specified lambda function, checks
if the utility value is in the valid range ([0,+∞]), and, if so,

0 //Defining the utility calculation
1 Function<CompositionStrategy, Double>

utilityFunction = s -> {
2 double latency = s.getEstimatedLatency();
3 double tailLatency =

s.getEstimatedTail();
4 double reliability =

s.getEstimatedReliability();
5 double cost = s.getEstimatedCost();
6 double utility = reliability / (latency

* tailLatency * cost);
7 return utility;
8 };
9 //Applying the defined utility formula

10 Trans.applyUtility(utilityFunction);
11 //Defing when to trigger probing
12 Trans.probeAfterRuns(100) // or

Trans.probeAfterQoSDecrease(30)

Fig. 7: Example of Specifying Utility Calculation and Defining
Probing Trigger

selects the composition strategy with the highest utility. If any
utility value is negative, the system defaults to invoking all
services.

3) Defining Probing Trigger: We provide two schemes
for defining when to trigger probing, allowing developers to
choose based on their preferences or the QoS changes of
services. The first scheme, "probeAfterRuns," triggers probing
after a specified number of invocations, allowing developers
to set a fixed interval for probing. As shown in Line 12 of
Fig. 7, the developer sets the probing interval to 100 runs. The
second scheme, "probeAfterQoSDecrease," involves recording
the average QoS of the previous n = 20 invocations. If the
QoS of a new service invocation differs from this average
by a specified percentage, probing is triggered. An example
of using this scheme is Trans.probeAfterQoSDecrease(30),
which sets the tolerance gap for QoS difference at 30%.
This scheme is sensitive to QoS changes in services, ensuring
timely adjustment of the composition strategy.

D. Composition QoS Estimation Model

Given an optimization goal set by a developer, an effective
way of identifying the optimal composition strategy is to
traverse all possible composition strategies. This process in-
volves: 1) Modeling QoS for individual homogeneous services
and estimating QoS for their compositions; 2) Evaluating all
feasible strategies against cost and reliability constraints to
select the one with the optimal latency satisfaction index. The
rationale for exhaustive search is its manageable scope: if we
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have 10 homogeneous services, only 210 = 1, 024 possible
strategies exist. The cornerstone of successfully finding the
optimal strategy is accurately estimating the QoS of each
service composition.

For a service i ∈ I, we use ci, ri, and li to denote its cost,
reliability, and latency. Given a set of homogeneous services
Hs of a composition strategy s, their speculative parallel
invocation succeeds when any service succeeds, and fails
when all constituent services fail. Existing approaches [25],
[26] estimate the QoS for their speculative parallel invocation
as: 1) Cs =

∑
i∈Hs

ci; 2) Rs = 1 −
∏

i∈Hs
(1− ri); 3)

Ls = min(li), ∀i ∈ Hs. We found that while the cost and
reliability estimations are accurate, the latency estimation is
not.
Accurate Latency Estimation with Low Overhead Achiev-
ing high accuracy in QoS estimation is challenging, and doing
so with low overhead makes it even more difficult. Higher esti-
mation accuracy usually requires more QoS samples, increas-
ing probing requests. To address this, we model service latency
as a distribution rather than a single value, enhancing the
accuracy of estimating composition latency even with limited
QoS samples. The distribution is calculated from the recorded
QoS data of the service. In particular, this paper adopts the
Shifted Exponential Distribution [28] to model an individual
service’s latency. We employ a piecewise function, Fi(x),
to represent the Cumulative Distribution Function (CDF) of
service i’s latency, where x denotes a latency value.

Fi(x) =

{
0, x < t

1− e−
1

m−t (x−t), x ≥ t
(1)

The distribution parameters, t and m, correspond to the
service’s minimum latency and average latency, respectively.
In contrast to other service latency distributions (e.g., Erlang
and Pareto) that require estimating parameters from the entire
set of invocation samples, the distribution we choose is simple
and only requires acquiring one additional latency statistical
parameter, the minimum latency, in addition to the average
latency.

After modeling each homogeneous service’s latency, we
calculate the resulting latency distribution for a composition.
Recall that we use li, ∀i ∈ Hs to denote the latency of a

service i. We use P
(
Ls ≤ x

)
to denote the probability that

the latency Ls of a composition strategy s is less than x.
Assuming li, ∀i ∈ Hs are independent, we have:

P
(
Ls ≤ x

)
= P

(
min(li) ≤ x

)
, ∀i ∈ Hs

= 1−P
(
min(li) > x

)
, ∀i ∈ Hs

= 1−
Hs∏
i=1

P
(
li > x

)
= 1−

Hs∏
i=1

(1−P
(
li ≤ x

)
)

(2)

We can calculate the resulting latency CDF P
(
Ls ≤ x

)
by using P (li ≤ x) = Fi(x), where Fi(x) is given by Eq.
1. After calculating the latency distribution, we can further
calculate other statistics of interest, such as the average latency
(i.e., Ls) or tail latency (i.e., Ts) in a closed-form expression,
which other service distribution models cannot achieve.

E. Reference Implementation

We implemented our runtime system as an Android library,
facilitating easy integration into mobile Apps. Our imple-
mentation2 contains approximately 620 lines of Java code.
We further use "Language Translation" as an example to
demonstrate how the library is implemented and integrated
into an application (Fig.8). Initially, when a translation request
arises, and no pre-calculated strategy exists, all three transla-
tion services are invoked simultaneously, and the first returned
result is used. This probing continues until a sufficient number
of QoS data samples are collected, specified as 25. Based
on this data, the system calculates an optimal composition
strategy (e.g., combining only Lecto and Text), which is
then saved. Future requests bypass the probing phase and use
the pre-determined strategy, enhancing QoS by avoiding less
efficient service combinations.
QoS Optimization Goal Utilizing the programming interface
for specifying QoS requirements, we implemented the follow-
ing QoS optimization goal. We treat the developer’s relia-
bility and latency requirements as hard and soft constraints,

2https://github.com/zqli-sketch/HSC
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respectively. Let Ĉ, R̂, L̂, and T̂ denote the developer’s
per-invocation budget, minimum reliability, desired average
latency, and desired tail latency. Let I = i = 1, 2, 3, ...I repre-
sent a set of homogeneous services, and S = s = 1, 2, 3, ...S
represent all possible composition strategies. For a strategy
s, let Ls, Rs, Ts, and Cs denote its latency, reliability,
tail latency, and cost. The utility calculation formula of this
optimization goal can be noted as:

Utility(s) =
Ls + L̂

Ls
· Ts + T̂

Ts
where Rs ≥ R̂ and Cs ≤ Ĉ

(3)
Here, Ls+L̂

Ls
∗ Ts+T̂

Ts
represents the latency satisfaction index,

ranging from (1,+∞). To determine the optimal strategy, our
system runtime first ensures each strategy meets the reliability
and cost constraints: Rs ≥ R̂ and Cs ≤ Ĉ. Then, it calculates
the utility for each strategy using the formula above. The
strategy with the highest utility value is considered the optimal
composition strategy.

V. EVALUATION

This section presents how we evaluate HomoService and
the experimental results. Specifically, we begin by assessing
the accuracy of our QoS estimation model, followed by an
analysis of the cost-efficiency in improving client-perceived
QoS. Lastly, we evaluate the overhead imposed on mobile
clients by our approach. The evaluation questions, along with
the key findings, are as follows:
EQ1: How accurate is our QoS estimation model?
Findings: Our results show that the accuracy of our model
is similar for average latency and higher for tail latency, as
compared with baseline approaches.
EQ2: How much does HomoService improve QoS and reduce
invocation costs?
Findings: Our results demonstrate that HomoService can re-
duce average latency by 8%, decrease tail latency by 35%,
and increase reliability to 100% compared to average-optimal
service. Additionally, it incurs 50% less cost compared to static
homogeneous service composition.
EQ3: What are the HomoService’s usage overheads?
Findings: The CPU, memory, and battery usages of HomoSer-
vice are acceptable on modern mobile phones.

A. Performance of our QoS Estimation Model

We first evaluated the fitness of the latency model for
individual services. Then, we assessed the model’s accuracy
in estimating composite latency.
For Individual Services We use the real service latency
traces collected in our previous study, which contain 90 sets
of service invocation samples, to evaluate the fitness of our
latency model. We compare our model, which is based on
Shifted Exponential distribution, with two other distributions–
namely, the Erlang and Pareto distributions. Our evaluation
measures how closely the values predicted by these models
match the actual values, in terms of the mean, median, and
95th percentile latency [29]. We employ a statistical measure
R2 [30] (or the coefficient of determination) to evaluate the

goodness of fit of a regression model from predicted latency
to actual latency. R2 score usually ranges from 0 to 1, with a
higher score indicating a better fit of the model to the data.

We first measure the fitness of these models if a large
volume of samples is provided. For each of the 90 sets of
invocation samples, we estimate the distribution parameters
for each of the three distributions. We then calculate R2

for mean, median, and tail latency (i.e., 95th percentile) as
R2 = 1 −

∑
i(ŷi−yi)

2∑
i(yi−ȳ)2

, where i denotes a set of invocation
samples, ŷi, yi, and ȳi represent the predicted value, actual
value, and the average of all actual values respectively. Table
1 shows the results, from which we observe that the Shifted
Exponential distribution is a good fit for modeling individual
service latency. Compared with the Erlang distribution, the
Shifted Exponential distribution exhibits slightly inferior tail
latency. We still choose to use Shifted Exponential distribution
for its simplicity (i.e., it only needs to know the average and
minimum latency of all invocation samples), as well as its
superior performance for small sample sizes.

Shifted Exponential Distribution Erlang Distribution Pareto Distribution
Means 0.9983 0.9985 0.8444

Medians 0.9785 0.9707 0.9812
Tails 0.8041 0.9019 -0.6448

TABLE III: R2 between the Actual and Predicted Means,
Medians, and Tails of Individual Services

Next, we measure the fitness of these models when given
a small volume of samples, as it is practical to make the
composition decision at runtime by invoking each service a
limited number of times. We vary the number of invocation
samples in increments of 10, ranging from 5 to 50. For each
sample size, we randomly select invocation samples for model
fitting, repeat the process 400 times, and calculate the average
R2 for these 400 repetitions. Fig. 9 demonstrates the changes
in R2 for mean, median, and tail latency, respectively. We
observe a clear trend that the Shifted Exponential distribution
outperforms the other two distributions.
For Service Composition For service compositions, we fur-
ther measure the estimation accuracy of our model for average
latency and tail latency (90th, 95th percentile latency). We
compare our approach with the following baseline approaches:

• Average Latency Based [25], [26]: This is the approach
adopted in existing studies. It estimates the latency of a
composition as the minimum value of the average latency
of all invoked services.

• Single Statistic-Based: We extend the idea of using the
minimum value of average latency to tail latency. We
measure the tail latency of individual services and use the
minimum value as the tail latency of their composition.
For instance, for three homogeneous services with tail
latency values T1, T2, T3, the tail latency of their compo-
sition is calculated as T = min(T1, T2, T3).

• Linear Regression: To make a fair comparison, we pro-
pose a linear regression-based approach. We use 80% of
the 90 sets of invocation traces as the training set to train
a linear regression model for predicting the average and
tail latency values for their composition. This method has
demonstrated its effectiveness in estimating the overall
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(a) R2 for Avg. Latency (b) R2 for Mdn. Latency (c) R2 for Tail Latency

Fig. 9: Sample Size’s Impact on Modeling Fitness for Individual Services

(a) Average Latency (b) 90% Tail Latency (c) 95% Tail Latency

Fig. 10: Sample Size’s Impact on Modeling Fitness for Service Composition

service latency when considering all the latencies of RPC
calls [31]. In the aforementioned example, the linear
regression model takes T1, T2, T3 as inputs and outputs
the estimated resulting tail latency for a composition
strategy that combines three services.

Average 90% 95%
Average Latency-Based 0.9620 N.A. N.A.
Single Statistic-Based 0.9620 0.8995 0.9546

Linear Regression 0.6944 0.6819 0.6492
Our Approach 0.9858 0.9433 0.9371

TABLE IV: R2 of Actual and Estimated Latency Metrics

Table IV summarizes the R2 values for different latency
metrics for our approach and the baseline approaches, which
are calculated based on all samples in a trace set. We observe
that our approach outperforms all other approaches in average
and 90% latency, and is comparable with the single-statistic-
based approach in 95% latency.

We further compare the performance of these approaches
when the sample size is smaller. We vary the number of
invocation samples in increments of 10, ranging from 5 to
50. We randomly select the required number of samples from
each trace, and repeat the procedure 400 times. As shown in
Fig. 10, when the sample size reaches 30, our approach shows
significantly better accuracy than other approaches, especially
for the tail latency. Overall, our approach is more accurate
in estimating the composition latency compared with other
approaches, particularly when the sample size is limited.

B. QoS Benefits and Cost Reduction of Using HomoService

We then study how HomoService improves QoS and re-
duces cost by conducting both real-world testbed evaluation
and simulations.
QoS Parameters Configuration When using HomoService,
parameters like service invocation cost, required reliability,
latency, and sample size are crucial. We developed a random
budget generator to evaluate our solution under various cost
constraints. The budget range is defined from the cost of
the average-optimal service (minimum) to a maximum of K
times the highest service cost, with K initially set at 2. Costs
were sourced from the corresponding service’s RapidAPI page,
normalized to integers, and used to generate budgets. We
targeted a reliability of 99.99% and aimed for latencies 15%
better than the average-optimal service, with a set sample size
of 25 for each application implementing the composition.

1) Performance Measured by Testbed: We first describe the
configuration of our testbed and the baseline approaches used
for comparison, followed by an analysis of the experimental
results.
Configuration and Deployment We developed six Android
applications in Java, each corresponding to a specific task
selected from our empirical study in Section III-A. For each
task, we used three equivalent services, and retrieved their
endpoint URLs from their respective pages on the RapidAPI
website. Each application was implemented in three variants,
corresponding to different service invocation paradigms:
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QoS
Metric Reliability Cost Avg Latency (ms) Tail Latency (ms)

Paradigm Avg-Optimal Static Dynamic Avg-Optimal Static Dynamic Avg-Optimal Static Dynamic Avg-Optimal Static Dynamic
Translation 0.99 1.00 1.00 67 184 82 395 196 339 1511 300 1173
Face Detect 1.00 1.00 1.00 10 13 13 1241 1071 1098 1648 1537 1555

IP2Loc 0.99 1.00 1.00 23 96 44 213 143 159 937 712 768
Weather 1.00 1.00 1.00 2000 3500 2495 283 254 265 1204 987 1073
Flight 1.00 1.00 1.00 20 23 23 880 846 848 1958 1741 1754
Hotel 1.00 1.00 1.00 20 53 24 858 848 848 4874 4669 4866

Average 0.99 1.00 1.00 356 644 446 645 559 592 2022 1657 1864

TABLE V: Service QoS Performance of Real Apps with Different Invocation Paradigms at Michigan, US

• Avg-Optimal: This variant invokes the service with the
best average latency among the three equivalent services
across the five locations.

• Static: This variant employs Static Homogeneous Service
Composition, where all three equivalent services are
hardcoded and invoked simultaneously. The application
uses the first response returned to continue execution.

• Dynamic: This variant uses our proposed approach,
HomoService, which dynamically determines the opti-
mal subset of services to invoke. We used the same
three equivalent services and composed them via our
programming interface. The composition was configured
with target reliability, average latency, and tail latency
requirements as described previously.

We tested each variant on three Samsung Galaxy A53 phones
(Octa-core CPU, 6GB RAM), running simultaneously for
24 hours in Michigan, USA. Each variant was executed at
40-second intervals. For the variant using dynamic service
composition, the cost requirement was varied in each run based
on the random budget generator. We recorded both the end-
to-end latency and the average reliability for all variants.
Results Table V shows the QoS performance comparison
among three invocation paradigms across tasks. Observations
include: 1) “Translation", “Face Detect", and “IP2Loc" ser-
vices benefit the most from homogeneous service composition,
reducing average latency by 11–25% and tail latency by
6–22% compared to the average-optimal services; 2) Consid-
ering all services, homogeneous service composition improves
reliability to 100% and reduces both average and tail latencies
by 8% compared with the average-optimal service; 3) Dynamic
composition costs 25% more than the average-optimal service,
whereas static composition costs 80% more without significant
QoS benefits, except for "Translation," where it reduces tail
latency to 300ms, outperforming our solution due to its higher
cost, nearly 3x that of invoking an average-optimal service.
Overall, the performance difference between HomoService and
static homogeneous service compositions is minor, but the
latter is much more expensive.

2) Performance Measured by Simulation: To evaluate the
performance of our approach at scale, we used real service
QoS traces collected in our previous study. These traces
cover all six tasks and were gathered from five locations
worldwide, comprising 90 sets of service invocation samples.
For each task at each location, we used Python to apply
our optimization algorithm to identify the optimal compo-
sition strategy and simulate service invocations accordingly
(i.e., Dynamic). Consistent with the testbed evaluation, we
also implemented the Avg-Optimal paradigm and the Static

homogeneous composition paradigm as baselines. Due to the
randomness introduced by the cost budget generator, we ran
the Dynamic simulation 400 times. In each run, the cost
requirement was varied according to the generator, following
the same configuration as in the testbed experiments.
Results For each task at each location, we computed the
average latency and reliability after completing the designated
simulation invocations under each invocation paradigm. We
then averaged the results across all six tasks to obtain the
overall average latency and reliability for each paradigm.
The aggregated results for all locations are summarized in
Table VI. Findings include: 1) Dynamic composition boosts
QoS at each location, enhancing reliability to 100% and
reducing average latency by 8% and tail latency by 35%
compared to invoking the average-optimal services considering
all locations; 2) Overall, dynamic composition costs 31% more
than invoking average-optimal services, whereas static compo-
sition costs 80% more but only slightly improves latency (3%
average, 11% tail). In summary, HomoService offers the most
cost-effective improvement in service reliability, latency, and
budget efficiency.
Sensitivity Analysis We next investigate how the system
parameter, the budget upper bound parameter K, affects the
performance of HomoService. We conducted simulations with
400 runs for each configuration; larger values of K means
higher cost budget.

Fig. 11: Cost Budget’s Impacts on QoS Benefits

As shown in Fig. 11, increasing the cost budget from 1
to 2 significantly improves reliability, reaching the maximum
of 100%. Beyond this point, reliability remains unchanged.
In terms of latency, increasing the cost budget has a greater
impact on tail latency than on average latency. Similar to
the reliability trend, increasing the budget initially leads to
a sharp reduction in tail latency, followed by a plateau.
These observations suggest that allocating a higher budget to
invoke more services does not necessarily yield proportional
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QoS
Metric Reliability Cost Avg Latency (ms) Tail Latency (ms)

Paradigm Avg-Optimal Static Dynamic Avg-Optimal Static Dynamic Avg-Optimal Static Dynamic Avg-Optimal Static Dynamic
India 0.99 1.00 1.00 356 645 467 841 711 744 3094 1392 1773
Japan 0.99 1.00 1.00 356 645 467 500 432 448 2882 1111 1500

Australia 0.99 1.00 1.00 356 645 469 783 730 743 3379 1683 2059
Germany 0.99 1.00 1.00 356 645 468 701 671 680 1389 1119 1250

US 0.99 1.00 1.00 356 645 468 661 550 591 2100 1621 1804
Average 0.99 1.00 1.00 356 645 468 697 619 641 2568 1385 1677

TABLE VI: Service QoS Performance of Different Invocation Paradigms at Five Locations Worldwide

benefits, highlighting the low cost-efficiency of traditional
static homogeneous service composition.

C. Overheads of Using HomoService

While the QoS benefits of homogeneous service composi-
tion are evident for end users, it is also important to measure
the overhead of supporting it on resource-limited mobile
devices. We used the “Language Translation” App to compare
the CPU usage, memory utilization, and energy consumption
of our framework against the other two baseline approaches.
We ran each variant of the app continuously for three hours
on a fully charged phone configured with identical system
settings, including screen brightness, network connectivity, and
background applications.

Fig. 12: Phone’s CPU/Memory Usage Comparison

CPU and Memory Consumption Fig. 12 shows the CPU and
memory usage for three service invocation paradigms. Both
“Dynamic” and “Static” incurred less than 1% on average and
2% at peak for CPU usage. For memory usage, our solution
used approximately 30MB more memory. Considering the GB-
level memory capacities and speedy processors of modern
mobile phones, the additional CPU and memory overhead is
acceptable.
Power Consumption We also recorded the phone’s power
consumption over the three-hour test period. We found that
the consumption for “Avg-optimal”, “Static” and “Dynamic”
was 669mAh, 712mAh, and 699mAh, respectively. We can see
that invoking all services incurred higher power consumption
due to issuing more HTTP requests than our approach.

In summary, our approach incurs acceptable overhead for
clients. Static homogeneous service composition leads to
higher costs and greater resource consumption, underscoring
the efficiency of dynamic composition for enhancing QoS.

VI. APPLICABILITY

Many server-side mechanisms—such as CDNs, edge com-
puting, load balancing, and redundancy strategies—have been

widely adopted to improve QoS. However, server-side op-
timization is approaching a bottleneck, as further improve-
ments often require significant investment in infrastructure
and resources. In contrast to these well-established server-
side techniques, homogeneous service composition optimizes
QoS on the client side. This client-centric approach offers
a promising yet underexplored direction for enhancing user-
perceived performance. Although it may involve invoking ad-
ditional services, application developers or providers typically
operate within a defined cost budget for each round of service
invocation. Within this budget, invoking multiple services to
improve QoS can be a worthwhile investment, as better user
experiences can lead to tangible business benefits, such as
increased user retention and market share [32].

Our approach, HomoService, accurately identifies optimal
composition strategies that maximize QoS benefits within
a given budget, using only a limited number of samples.
Supported by an intuitive programming interface, it allows
developers to easily customize invocation strategies for users
at different locations.

VII. CONCLUSION AND FUTURE WORK

In this paper, we introduced an approach that dynamically
composes homogeneous services for each client, achieving
the desired QoS for performance-critical services while min-
imizing invocation costs. Unlike static homogeneous service
composition, which invokes all services to improve QoS at
high costs, our approach customizes the optimal composi-
tion strategy to balance QoS benefits and invocation costs
for each end user. We implemented a system prototype of
our approach and conducted comprehensive evaluations. The
experimental results demonstrate the efficacy and applicability
of our approach, making it a valuable tool for service-oriented
application developers.

In future work, we plan to: 1) Extend the current QoS opti-
mization objective, which primarily focuses on system-related
performance metrics such as latency and reliability, to also
incorporate data-related quality factors from service responses.
Designing a mathematical model that jointly optimizes system-
level and data-level performance (e.g., accuracy) while achiev-
ing a proper trade-off between them remains a non-trivial chal-
lenge; 2) Investigate collaborative strategies for QoS learning.
At present, each user probes the services independently and
stores the measured QoS locally to determine its own optimal
strategy. Future research will explore mechanisms that allow
users to share anonymized QoS observations, thereby reducing
probing overhead and accelerating convergence across clients.
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