Client-Specific Homogeneous Service
Composition at Runtime for QoS-Critical Tasks

Abstract. Web services are widely used in modern software, provid-
ing diverse data and functionalities. Some data and functionalities are
critical to an application’s execution and user experience, posing strict
requirements on the Quality of Service (QoS) of their delivery (e.g., la-
tency and reliability), which services often fail to meet. Previous studies
show that composing homogeneous services, i.e., simultaneously invok-
ing multiple services providing the same functionalities and returning
the first response, can improve latency and reliability. However, this ap-
proach increases the workloads on cloud servers and causes additional
network traffic, limiting its deployment at scale. Our empirical study re-
veals that services deliver varying QoS across different locations, making
it possible to reduce the invocation cost by customizing the composition
strategy for different clients. In this paper, we introduce an approach
that composes homogeneous services dynamically for each client, achiev-
ing the desired QoS for critical services while minimizing the invocation
costs. In particular, our approach first probes the QoS of all homoge-
neous services for a client, and then calculates an optimal composition
strategy that satisfies the QoS requirements specified by App developers
with minimum cost. We prototyped our approach as an Android library
and tested it via both real-world experiments and simulations. The eval-
uation results show that our approach significantly improves the QoS
invoking a single service (enhancing reliability to 100%, reducing aver-
age latency by 7% and tail latency by 35%) while incurring 50% less
cost than static homogeneous composition, making it a useful tool for
service-oriented applications.
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1 Introduction

Web services are widely used in modern software, providing diverse data and
functionalities essential for various applications. Some of these data and func-
tionalities are critical to an application’s execution and user experience, such as
real-time data processing in financial transactions or live updates in social me-
dia platforms. Given several functionally-equivalent services, developers face the
problem of how to meet the stringent QoS requirements of their applications, in
terms of latency, tail latency, and reliability.

The current state-of-the-practice approach is to select and invoke a skyline
service (see Fig. 1 up left), i.e., a service that is not dominated by any other
functionally-equivalent services. However, according to service statistics collected
by service marketplaces [14] and an empirical study on developers’ comments in-
voking web services [4], even skyline services sometimes fail to meet QoS require-
ments. To further improve QoS for critical tasks, previous works [5,17,18] have



explored the composition of homogeneous services, which involves simultaneously
invoking multiple equivalent services and using the first response to continue the
application’s execution (Fig. 1 bottom left). While effective in enhancing QoS,
this method significantly increases the number of service invocations, causing
higher workloads on web servers and more network traffic. The additional invo-
cation cost makes this approach impractical for large-scale deployment.
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Fig. 1: Approaches for Satisfying the QoS Requirements of Critical Tasks

By conducting an empirical study that involved invoking services from five
global locations, we observed that most services exhibit significantly different
QoS at various locations. Inspired by this observation, this paper introduces a
more cost-efficient homogeneous service composition approach, which customizes
service composition for end users at runtime. As demonstrated by the right sub-
figure in Fig. 1, for clients at different locations, our approach first probes the
QoS of all homogeneous services, and calculates a client-specific composition
strategy that best satisfies the developers’ QoS requirements within a predefined
invocation cost budget.

The main contributions of our paper are as below:

— We conducted a large-scale study of web service QoS by invoking services
at five locations worldwide. Our study confirmed that 1) Service QoS sig-
nificantly varies by location, resulting in some users receiving unsatisfactory
QoS, and 2) composing homogeneous service statically improves QoS, but
causes unnecessary invocation costs, which motivate this work.

— We introduced an approach that customizes service composition strategies
for individual clients for both QoS improvement and cost efficiency.

— We proposed a QoS estimation model for composition strategies, which en-
sures selecting a QoS-optimal strategy with less probing cost.

— We prototyped our approach and evaluated it with testbed experiments and
trace-based simulations. The results indicate that 1) our QoS estimation
model is more accurate than all baseline approaches; 2) on average, our
approach improves reliability from 99% to 100%, reduces mean latency and
tail latency by 7% and 35% respectively, while incurring 50% less cost than
static homogeneous service composition.
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2 Existing Approaches and Opportunities

In this section, we first summarize existing approaches for meeting the QoS
requirements of critical tasks, and introduce our empirical study on the real-
world performance of service invocations.

2.1 Meeting the QoS Requirements of Critical Tasks

The problem of QoS-based web service selection and composition has consis-
tently received significant attention over the past two decades [1,6]. As service-
oriented architecture remains the primary method for accessing remote data and
functionalities, critical tasks such as VR/AR, autonomous driving, and financial
transactions demand stringent QoS requirements. Below, we introduce current
solutions aimed at meeting these requirements.

Skyline Service Selection. Among a set of equivalent services, a service is
considered a skyline service if no other service is better in all QoS attributes si-
multaneously. Developers can either hard code a pre-selected skyline service into
their application [1] or rely on service gateways to select a service with optimal
real-time QoS for composition [11]. This approach assumes that a selected sky-
line service can always satisfy the soft QoS requirements of an application [16].
However, this is not true for emerging applications with hard QoS requirements.
Static Homogeneous Service Composition. Homogeneous service compo-
sition has been explored in various contexts to enhance QoS. For example, some
studies [17, 18] invoke multiple microservices in a way of speculative parallel
fashion to improve the system reliability and execution time for applications
in IoT environments. [5] parallely invoke multiple cognitive web services to im-
prove accuracy (e.g., face recognition accuracy). Despite their benefits, these
approaches simply invoking all services specified by static configurations, which
lack flexibility and can lead to significant operational costs at runtime.

2.2 Empirical Study: A Large-Scale QoS Measurement

The most recent large-scale web service QoS measurement, conducted 10 years
ago [22], revealed significant performance variation across different invocation
contexts like locations and times. Since then, the use of content distribution
networks (CDNs) [13] has increased to reduce latency by bringing services closer
to users. However, it is still unclear if CDNs consistently ensure service reliability
and minimize end-to-end delays, which are crucial for a good user experience.
Methodology: Our study evaluated six types of tasks: weather forecasting,
IP-to-location, face detection, language translation, flight data retrieval, and ho-
tel data retrieval, to cover typical service usages scenarios [3,7,20]. For each
task, we selected three homogeneous services, giving priority to those with lower
subscription costs and higher popularity. We developed a Python program to
invoke these services every 40 seconds from five global locations—Frankfurt,



Service Germany Japan Australia India uUs
FaceDet. inferdo 1574 / 1769 | 1735 / 1937 | 1623 / 2030 | 2081 / 2291 [ 1761 / 1924
microsoftFace 827 /1252 | 1152 / 1573 | 1377 / 1851 | 1554 / 1820 | 1065 / 1365
SmartClick 954 / 1314 | 1610 / 1975 | 1674 / 2003 | 1468 / 1900 | 1517 / 1841
IP2Loc. IP__GEO 22 / 40 25 / 37 22 / 37 531 / 562 116 / 295
IP lookup 35 / 56 39 / 57 37 /53 43 /79 182 / 373
IPGtolocation 651 / 907 636 / 796 803 / 989 934 / 1241 533 / 896
Weather [openWeatherMap | 62 / 123 297 / 467 365 / 576 231 / 312 222 / 610
Visual Crossing | 397 / 439 716 / 783 904 / 1016 828 / 3773 296 / 797
weatherbitio 374 / 419 705 / 753 902 / 951 808 / 856 248 / 575
Trans. Lecto Trans. 343 / 543 486 / 845 683 / 1028 590 / 873 350 / 538
NLP Trans. 406 / 461 699 / 802 866 / 955 1166 / 1260 | 193 / 253
Text Trans. 538 / 608 772 ) 878 959 / 1074 | 1193 / 1363 | 289 / 359
Flight FlightRadar 3520 / 4088 | 4084 / 4634 | 2468 / 2962 | 6213 / 7551 |2383 / 3090
FlyTrips 309 / 375 | 1374 / 1491 | 1679 / 1765 | 1484 / 1632 | 823 / 1163
TravelAdvisor |[1128 /2471 | 1172 / 2825 | 1312 / 3476 | 1580 / 3161 | 899 / 2655
Hotel Booking.com | 238 / 769 | 652 / 1202 | 714 /952 | 749 / 1149 | 635 / 1625
Hotels 968 / 4284 | 1102 / 4635 | 1224 / 5810 | 1628 / 5242 | 887 / 4974
Priceline 1925 / 3615 | 2333 / 3313 | 2249 / 3438 | 2482 / 4090 | 1983 / 3197
Avg. 792 / 1307|1088 / 1616[1103 / 1720|1420 / 2175[799 / 1473

Table 1: Latency Performance (in milliseconds) for All Six Sets of Homogeneous
Services. Each cell presents Average Latency followed by Tail Latency.

FaceDet. | IP2Loc. | Weather | Trans. | Flight | Hotel
Servicel| 99.98 100 100 99.88 | 100 | 100
Service2| 98.94 99.99 | 99.99 |99.99 | 100 | 100
Service3| 99.97 99.99 | 99.99 |99.95| 100 |99.43

Avg. 99.63 99.99 | 99.99 |99.94 | 100 |99.81

Table 2: The Average Reliability (%) for Homogeneous Services, with Service 1,
2, 3 Representing Different Services for Each Task Type.

Tokyo, Sydney, Mumbai, and Michigan—over continuous three days. This pro-
cess collected approximately 4,000 samples per service set, totaling 90 service
invocation trace sets.

Basic Results: Our findings, summarized in Tables 1 and 2, indicates that
approximately 90% of the services had average and tail latencies exceeding
200ms—deemed unsatisfactory with tail latencies nearly twice the average, wors-
ening user experiences. Moreover, most services failed to meet the minimum relia-
bility standard of 99.9%, which is usually expected for service users. For instance,
Amazon compensates users if AWS service availability drops below 99.9% |[2].
Services involving complex cloud backends or large data transmissions, like face
detection and translation, were particularly unreliable.

2.3 Observations and Opportunities

We further analyzed the measurement results and drew a couple of deeper ob-
servations that motivated our approach of composing homogeneous services for
individual users.

Observations: We first investigated the QoS performance of skyline services
across different locations. For each task, given three services, the skyline service
was selected as the one with the best average latency across all five locations.
Our results show that skyline services do not consistently outperform their peers
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for most tasks. For example, in language translation, Lecto Trans. had the
best latency in four locations but not in Michigan, USA.

Observation 1

Due to the high variation in service QoS, skyline services could not consis-
tently outperform their peers in some locations, risking QoS satisfaction.

We then examined the efficiency of the current static homogeneous service
composition. Using the collected service invocation traces, we showed the latency
improvement of invoking different services. For example, combining two services
reduces average latency by 10% and 95th percentile latency by 24%, as shown in
Fig.2a. Further adding a third service reduces tail latency more, as per Fig.2b.
However, Fig.2c shows combining all three services fails to further reduce the
latency of two services, which means that simply invoking all services does not
always guarantee better QoS while incurring higher cost.
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Fig. 2: Latency of Combined Invocations of Homogeneous Services

Observation 2

Static homogeneous service composition may incur unnecessary costs.

To find the efficient service combination for each user, it requires accurately
estimate the resulting QoS for each combination. Existing method [8,19] uses
the minimum average latency among services as the composited latency, which
is inaccurate: We observed that the average latency of a speculative parallel
invocation can be even lower, as the fastest service may sometimes experience
long tail latency, and the slower service might return the result sooner.

Existing QoS estimation model for compositions is inadequate.

To better satisfy the QoS requirements, there is a pressing need of dynami-
cally customize the service composition for individual users. To realize this ap-
proach, it demands a more accurate QoS estimation model.



3 HomoService: Client-specific Service Composition

This section introduces our approach to composing homogeneous services for
individual clients. To differentiate it from traditional web services, we refer to
the composed service as "HomoService." We adopt the syntax for homogeneous
service composition as described in [17], where axb denotes the workflow pattern
of invoking two services, a and b, in parallel and using the first returned result.

3.1 Design Challenges

To the best of our knowledge, our work is the first attempt at client-specific
homogeneous service composition. Our approach addresses these challenges:

— How to support HomoServices generically for dissimilar application scenar-
ios? We design a system workflow that requires no additional network infras-
tructure support and adapts to the fluctuations of service QoS (Sec. 3.2).

— How can developers build HomoServices considering their vastly dissimilar
QoS requirements, such as hard /soft requirements on latency, reliability, and
cost? We design programming models that are both intuitive to use and
flexible, ensuring high expressiveness (Sec. 3.3).

— How to provide satisfactory QoS with minimum overhead? We establish a
model that more accurately estimates the QoS of a composition with fewer
probing requests (Sec. 3.4).

3.2 System Workflow

Traditional (heterogeneous) service composition [9] typically involves a service
gateway that dynamically decides which services to invoke based on a client’s
QoS requirements and the services’ historical QoS. Adapting this approach to
support dynamic homogeneous service composition necessitates deploying dis-
tributed gateways in a fine-grained manner, which incurs additional costs. In
contrast, our approach requires only modifying the service invocation workflow
at the clients, eliminating the need for additional network infrastructure support.

Service QoS Strategy First Response O
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Fig. 3: The System Workflow of Our Approach

Fig.3 shows our system workflow design, which includes four steps:

1. Probing: Before generating an optimal composition strategy, a client needs
to probe the QoS of all homogeneous services several times. During the
probing stage, all services are invoked simultaneously. The first returned
result is used to continue the application’s execution, while the QoS of the
others (e.g., latency and reliability) is recorded.
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2. Calculating the Optimal Strategy: After obtaining sufficient QoS samples,
the client calculates an optimal strategy for future invocations. This strategy
specifies a selected subset of homogeneous services.

3. Invoking: Following the strategy, the client invokes the selected services in
parallel, uses the first returned result to continue the application’s execution,
and sends the QoS data to the monitoring module.

4. Monitoring: The monitoring module records the historical QoS of Ho-
moService invocations. If there is a significant change in QoS, it disables
the previously generated optimal strategy and triggers probing again.

3.3 Programming Model

Our programming model supports developers to intuitively build a HomoService,
flexibly specify QoS requirements, and declaratively define when to probe.

Building a HomoService Fig. 4 demonstrates how to compose a transla-
tion HomoService to convert English text "hello world" into French using our
programming interface. Line 2 reads the XML configuration files for each ho-
mogeneous service, and Line 4 invokes the HomoService. The XML file specifies
a service’s endpoint URL, cost per request, and mappings from user inputs to
URL parameters and service outputs. For example, the configuration for the
NLP Translation service (Fig. 5) details the service name (NLPTrans), end-
point URL (’http://nlp-trans.com/v1’), and cost ($0.0002 per request). The file
sets the HTTP method to GET and maps input parameters for the text (text),
source (from), and target languages (to) into the service URL. The URL
for a request would thus be: http://nlp-trans.com/vl2text=hello%
20world&from=ensto=fr. The responseMapping section instructs how to
parse the service’s JSON response to extract the translated text.

1 //Creating Homogeneous Services

2 HomoService Trans = new HomoService ("lectotrans", "nlptrans", "texttrans");
3 || //Invoking HomoService to translate *‘hello world’’ into French

4 String result = Trans.invoke("hello world", "en", "fr");

Fig. 4: Composing a Translation Service

Specifying QoS Requirements To meet diverse QoS requirements among
applications, we provide an interface for developers to define how to generate
the optimal composition strategy. The developers need to write a Java lambda
function to calculate the utility value of each service composition strategy. Line
1-10 in Fig. 6 shows an example. The developers obtain the estimated QoS val-
ues by calling corresponding functions. The utility is then calculated by dividing
reliability by the product of latency, tail latency, and cost, aiming to maxi-
mize reliability while minimizing latency and cost. Our runtime system takes
this specified lambda function, checks if the utility value is in the valid range



1 <?xml version="1.0" encoding="UTF-8"7?>

2 <serviceConfig>

3 <serviceName>NLPTrans</serviceName>

4 <serviceURL>http://nlp-trans.com/vl</serviceURL>
5 <method>GET</method>

6 <cost>0.0002</cost>

7 <parametersMapping>

8 <input name="text">text</input>

9 <input name="from">srcLang</input>

10 <input name="to">tgtLang</input>

11 </parametersMapping>

12 <responseMapping>

13 <output name="translated.text">text</output>
14 </responseMapping>

15 </serviceConfig>

Fig.5: Example Configuration File for nlptrans Service

//Defining the utility calculation
Function<CompositionStrategy, Double> utilityFunction = s -> {
double latency = s.getEstimatedLatency();
double taillatency = s.getEstimatedTail();
double reliability = s.getEstimatedReliability();
double cost = s.getEstimatedCost ();
double utility = reliability / (latency =* taillatency * cost);
return utility;
}i
//Applying the defined utility formula
Trans.applyUtility(utilityFunction);
//Defing when to trigger probing
Trans.probeAfterRuns (100) // or Trans.probeAfterQoSDecrease (30

© 0w N U AW N O
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Fig. 6: Example of Specifying Utility Calculation and Defining Probing Trigger

([0, +o¢]), and, if so, selects the composition strategy with the highest utility. If
any utility value is negative, the system defaults to invoking all services.

Defining Probing Trigger We provide two schemes for defining when to trig-
ger probing, allowing developers to choose based on their preferences or the QoS
changes of services. The first scheme, "probeAfterRuns," triggers probing after
a specified number of invocations, allowing developers to set a fixed interval for
probing. As shown in line 12 of Fig. 6, the developer sets the probing interval as
100 runs. The second scheme, "probeAfterQoSDecrease," involves recording the
average QoS of the previous n = 20 invocations. If the QoS of a new service in-
vocation differs from this average by a specified percentage, probing is triggered.
An example of using this scheme is Trans.probeAfterQoSDecrease(30), which
sets the tolerance gap for QoS difference at 30%. This scheme is sensitive to QoS
changes in services, ensuring timely adjustment of the composition strategy.

3.4 Composition QoS Estimation Model

Given an optimization goal set by a developer, an effective way of identifying the
optimal composition strategy is to traverse all possible composition strategies.
This process involves: 1) Modeling QoS for individual homogeneous services
and estimating QoS for their compositions; 2) Evaluating all feasible strategies
against cost and reliability constraints to select the one with the optimal latency
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satisfaction index. The rationale for exhaustive search is its manageable scope: if
we have 10 homogeneous services, only 2!° = 1,024 possible strategies exist. The
cornerstone of successfully finding the optimal strategy is accurately estimating
the QoS of each service composition.

For a service i € Z, we use ¢;, r;, and [; to denote its cost, reliability, and

latency. Given a set of homogeneous services H, of a composition strategy s,
their speculative parallel invocation succeeds when any service succeeds, and
fails when all constituent services fail. Existing approaches [8,19] estimate the
QoS for their speculative parallel invocation as: 1) Cs = >, ¢ 2) Rs =
L —[lies, (1 =7i); 3) Ls = min(l;), Vi € H,s. We found that while the cost and
reliability estimations are accurate, the latency estimation is not.
Accurate Latency Estimation with Low Overhead Achieving high accu-
racy in QoS estimation is challenging, and doing so with low overhead makes it
even more difficult. Higher estimation accuracy usually requires more QoS sam-
ples, increasing probing requests. To address this, we model service latency as
a distribution rather than a single value, enhancing the accuracy of estimating
composition latency even with limited QoS samples. The distribution is calcu-
lated from the recorded QoS data of the service. In particular, this paper adopts
the Shifted Exponential Distribution [15] to model individual service’s latency.
We employ a piece-wise function, F;(x), to represent the Cumulative Distribu-
tion Function (CDF) of service i’s latency, where x denotes a latency value.

Fi(x) = {0’ L vt (1)

l—ema®@ ) p>y¢

The distribution parameters, ¢ and m, correspond to the service’s minimum
latency and average latency, respectively. In contrast to other service latency
distributions (e.g., Erlang and Pareto Distribution) that require estimating pa-
rameters from the entire set of invocation samples, the distribution we choose is
simple and only requires to acquire one additional latency statistical parameter,
the minimum latency, in addition to the average latency.

After modeling each homogeneous service latency, we calculate the resulting
latency distribution for a composition. Recall that we use I;,Vi € H, to denote
the latency of a service i. We use P(LS < x) to denote the probability of the
latency L of a composition strategy s is less than x. Assuming [;,Vi € H, are
independent, we have:

P(Ls < 9:) = P(min(li) < x),Vi € Hs
=1—P(min(l;) > z),Vi € H,

Hs
=1-][P(>2) (2)
i=1

-1

= |

(1-P(l <x))

i=1
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We can calculate the resulting latency CDF P(LS < x) by using P(l; < z) =
F;(x), where F;(x) can be given by Eq. 1. After calculating the latency distri-
bution, we can further calculate other statistics of interest, such as the average
latency (i.e., L) or tail latency (i.e., T) in a closed-form expression, which other
service distributions models cannot achieve.

3.5 Reference Implementation

We implemented our runtime system as an Android library, facilitating easy inte-
gration into mobile Apps. our implementation contains approximately 620 lines
of Java code. We further use "Language Translation" as an example to demon-
strate how the library is implemented and integrated into an application (Fig.7).
Initially, when a translation request arises, and no pre-calculated strategy exists,
all three translation services are invoked simultaneously, and the first returned
result is used. This probing continues until a sufficient number of QoS data sam-
ples are collected, specified as 25. Based on this data, the system calculates an
optimal composition strategy (e.g., combining only Lecto and Text), which is
then saved. Future requests bypass the probing phase and use the pre-determined
strategy, enhancing QoS by avoiding less efficient service combinations.
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Fig. 7: Our Runtime Implementation
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QoS Optimization Goal Utilizing the programming interface for specifying
QoS requirements, we implemented the following QoS optimization goal. We
treat the developer’s reliability and latency requirements as hard and soft con-
straints, respectively. Let C’, R, f/, and 7' denote the developer’s per-invocation
budget, minimum reliability, desired average latency, and desired tail latency. Let
7 =1i=1,2,3,...I represent a set of homogeneous services,and S = s =1,2,3,...5
represent all possible composition strategies. For a strategy s, let L, Rs, T, and
C, denote its latency, reliability, tail latency, and cost. The utility calculation
formula of this optimization goal can be noted as:

Li+L T,+T . A

Utility(s) = tL Lt where R, > R and C; < C (3)
Ly T,

Here, %*YETLT represents the latency satisfaction index, ranging from (1, +00).

To determine the optimal strategy, our system runtime first ensures each strat-
egy meets the reliability and cost constraints: R; > R and Cs < C. Then, it
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calculate the utility for each strategy using the formula above. The strategy with
the highest utility value is considered the optimal composition strategy.

4 Evaluation

In this section, we evaluate the design of HomoService by answering the evalu-
ation questions listed below:

EQ1: How accurate is our QoS estimation model? Our results show that the
accuracy of our model is similar for average latency and higher for tail latency,
as compared with baseline approaches.

EQ2: How much does HomoService improve QoS and reduce invocation costs?
Our results demonstrate that HomoService can reduce average latency by 7%,
decrease tail latency by 35%, and increase reliability to 100% compared to sky-
line service selection. Additionally, it incurs 50% less cost compared to static
homogeneous service composition.

EQ3: What are the HomoService’s usage overheads? The CPU, memory, and
battery usages of HomoService are acceptable on modern mobile phones.

4.1 Performance of our QoS Estimation Model

For Individual Services We use the real service latency traces collected in
our empirical study, which contain 90 sets of service invocation samples. We
compare our latency model which is based on Shifted Exponential distribution
with two other distributions, namely the Erlang distribution and the Pareto dis-
tribution. Our evaluation measures how accurate the values predicted by these
models match the actual values, in terms of the mean, median, and 95" per-
centile latency [21]. We employ a statistical measure R? [12] (or the coefficient
of determination) to evaluate the goodness of fit of a regression model from pre-
dicted latency to actual latency. R? score usually ranges from 0 to 1, with a
higher score indicating a better fit of the model to the data.
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Fig. 8: Sample Size’s Impact on Modeling Fitness for Individual Services

We adjusted the number of samples from 5 to 50 in increments of 10, ran-
domly selecting samples for model fitting and repeating the process 400 times to
calculate the average R?. Fig. 8 shows the changes in R? for mean, median, and
tail latency, respectively. We observe a clear trend that the Shifted Exponential
distribution outperforms the other two distributions.
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For Service Composition For service compositions, we further measure the
estimation accuracy of our model on average latency and tail latency (90", 95
percentile latency). We compare our approach with the following three base-
line approaches: 1) Average Latency Based [8,19], which estimates the latency
of service composition as the minimum of the average latencies of all invoked
services; 2) Single Statistic-Based, which further estimates tail latency as the
minimum tail latency of individual services. For example, for three services with
tail latencies T4, T, T3, the composition’s tail latency is T' = min (77, T, T3); and
3) Linear Regression [10], which is trained using 80% of 90 sets of invocation
traces and predicts average and tail latencies. In the above example, the linear
regression model takes T7,T5,T5 as inputs and outputs the estimated resulting
tail latency for a composition strategy that combines three services.

Average| 90% | 95%
Average Latency-Based| 0.9620 | N.A. | N.A.
Single Statistic-Based | 0.9620 [0.8995|0.9546
Linear Regression 0.6944 |0.6819(0.6492
Our Approach 0.9858 [0.9433(0.9371

Table 3: R? of Actual and Estimated Latency Metrics

Table 3 presents the R? values for three latency metrics, comparing our
approach to baselines using all trace set samples. Our method excels in average
and 90% latency and matches the single-statistic-based approach in 95% latency.
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Fig.9: Sample Size’s Impact on Modeling Fitness for Service Composition

We compared the performance of these methods with varying sample sizes,
incrementing from 5 to 50 in steps of 10. We randomly select the required num-
ber of samples from each trace and repeat the procedure 400 times. As shown in
Fig. 9, when the sample size reaches 30, our approach shows much better accu-
racy than other approaches, especially for tail latency. Overall, our method more
accurately estimates composition latency, particularly with limited samples.

4.2 QoS Benefits and Cost Reduction of Using HomoService

We study how HomoService improves QoS and reduces cost by conducting both
real-world testbed evaluation and simulations. In the testbed, we developed An-
droid apps on Samsung Galaxy A53 phones (Octa-core CPUs, 6GB RAM) to
invoke third-party services. For each trace captured for one task at one location,
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we used Python to apply the optimization algorithm to identify the optimal
strategy and invoke the services within the strategy.

QoS Parameters Configuration: For using HomoService, parameters like
service invocation cost, required reliability, latency, and sample size are crucial.
We developed a random budget generator to evaluate our solution under various
cost constraints. The budget range is defined from the cost of the QoS optimal
service (minimum) to a maximum of K times the highest service cost, with K
initially set at 2. Costs were sourced from the service corresponding Rapid page,
normalized to integers, and used to generate budgets. We targeted a reliability
of 99.99% and aimed for latencies 15% better than the QoS optimal service, with
a set sample size of 25 for each application implementing the composition.
Performance Measured by Testbed: We developed six Android apps, one
for each type of task, with three variants for each app. The first variant uses our
system runtime, while the other two are: 1) Skyline, which invokes the service
with the best average latency across five locations, and 2) Static Homogeneous
Service Composition, which hardcodes and simultaneously invokes three homo-
geneous services. We tested each variant on three Android phones simultaneously
for 24 hours in Michigan, USA, with a 40-second interval, recording end-to-end
latency and average reliability.

Reliability Cost Latency ms (Avg. | Tail)
Paradigm | Skyline/Static/Dynamic | Skyline/Static/Dynamic Skyline/Static/Dynamic
Trans. 0.99/1.00/1.00 67/184/82 395/196/339 | 1511/300,/1173
FaceDet 1.00/1.00/1.00 10/13/13 1241/1071/1098 | 1648/1537,/1555
IP2Loc 0.99/1.00/1.00 23/96/44 213/143/159 | 937/712/768
Weather 1.00/1.00/1.00 2000/3500,/2495 283/254/265 | 1204/987/1073
Flight 1.00/1.00/1.00 20/23/23 880/846,/848 | 1958/1741/1754
Hotel 1.00/1.00/1.00 20/53/24 858/848/848 | 4874/4669 /4866
Avg. 0.99/1.00/1.00 356,644,446 645/559/592 | 2022/1657/1864

Table 4: Service QoS Performance of Real Apps at Michigan, US

Table 4 shows the QoS performance comparison of using three invocation
paradigms across tasks. Observations include: 1) “Translation", “Face Detect",
and “IP2Loc" services benefit the most from homogeneous service composition,
with reducing 11% to 25% of average latency and 6% to 22% of tail latency
compared to the corresponding Skyline services; 2) or all services, homogeneous
service composition improves the reliability to 100%, both average latency and
tail latency by 8%, as compared with the Skyline service; 3) dynamic composition
costs 25% more than the Skyline service, whereas static composition costs 80%
more without significant QoS benefits, except for "Translation," where it reduces
tail latency to 300ms, outperforming our solution due to its higher cost, nearly
3x that of Skyline. Overall, the performance difference between HomoService
and static homogeneous service compositions is minor, but the latter is much
more expensive.

Performance Measured by Simulation: We ran 400 Python simulations
and summarized the average results in Table 5, showing the QoS performance of
three different invocation paradigms at five global locations. Findings include:
1) dynamic composition boosts QoS at each location, enhancing reliability to
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Reliability Cost Latency ms (Avg. | Tail)
Paradigm | Skyline/Static/Dynamic | Skyline/Static/Dynamic Skyline/Static/Dynamic

India 0.99/1.00,/1.00 356,/645/467 841/711/744 | 3094/1392/1773

Japan 0.99/1.00/1.00 356/645/467 500/432/448 | 2882/1111/1500

Australia 0.99/1.00/1.00 356/645/469 783/730/743 | 3379/1683/2059

Germany 0.99/1.00/1.00 356/645/468 671/680/701 | 1389/1119/1250

US 0.99/1.00/1.00 356,/645/468 661/550/591 | 2100/1621/1804
Avg. 0.99/1.00/1.00 356,/645,/468 691/620,/645 | 2568/1385,/1677

Table 5: Service QoS Performance at Five Locations Worldwide

100% and reducing average latency by 7% and tail latency by 35% compared to
invoking skyline services; 2) Overall, dynamic composition costs 31% more than
Skyline, whereas static composition costs 80% more but only slightly improves
latency (3% average, 11% tail). In summary, HomoService offers the most cost-
effective improvement in service reliability, latency, and budget efficiency.

4.3 Overheads of Using HomoService

We also evaluated the overhead of using HomoService on resource-limited mobile
devices with a "Language Translation" app. We compared CPU usage, memory
utilization, and energy consumption of our implementation against two other
baseline approaches, running each app variant on a fully charged phone with
identical settings for three hours. The results show that: 1) our approach in-
creased CPU usage by at most 2% compared to invoking the skyline service
and required about 30MB of additional memory, which is minimal given modern
mobile phones’ capabilities; 2) our approach consumed 30mAh more energy com-
pared to the "Skyline" approach, while invoking all services consumed 44mAh.
In summary, our approach incurs acceptable overhead for clients. Static homo-
geneous service composition leads to higher costs and greater resource consump-
tion, underscoring the efficiency of dynamic composition for enhancing QoS.

5 Conclusion

In this paper, we introduced an approach that dynamically composes homo-
geneous services for each client, achieving the desired QoS for critical services
while minimizing invocation costs. Unlike static homogeneous service compo-
sition, which invokes all services to improve QoS at high costs, our approach
customizes the optimal composition strategy to balance QoS benefits and in-
vocation costs for each end user. We implemented a system prototype of our
approach and conducted comprehensive evaluations. The experimental results
demonstrate the efficacy and applicability of our approach, making it a valuable
tool for service-oriented application developers.
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